Ammoxidation of Lignocellulosic Materials: Formation of Nonheterocyclic Nitrogenous Compounds from Monosaccharides

نویسندگان

  • Karl Michael Klinger
  • Falk Liebner
  • Takashi Hosoya
  • Antje Potthast
  • Thomas Rosenau
چکیده

Ammoxidized technical lignins are valuable soil-improving materials that share many similarities with native terrestrial humic substances. In contrast to lignins, the chemical fate of carbohydrates as typical minor constituents of technical lignins during the ammoxidation processes has not been thoroughly investigated. Recently, we reported the formation of N-heterocyclic, ecotoxic compounds (OECD test 201) from both monosaccharides (D-glucose, D-xylose) and polysaccharides (cellulose, xylan) under ammoxidation conditions and showed that monosaccharides are a source more critical than polysaccharides in this respect. GC/MS-derivatization analysis of the crude product mixtures revealed that ammoxidation of carbohydrates which resembles the conditions encountered in nonenzymatical browning of foodstuff affords also a multitude of nonheterocyclic nitrogenous compounds such as aminosugars, glycosylamines, ammonium salts of aldonic, deoxyaldonic, oxalic and carbaminic acids, urea, acetamide, α-hydroxyamides, and even minor amounts of α-amino acids. D-glucose and D-xylose afforded largely similar product patterns which differed from each other only for those products that were formed under preservation of the chain integrity and stereoconfiguration of the respective monosaccharide. The kinetics and reaction pathways involved in the formation of the different classes of nitrogenous compounds under ammoxidation conditions are discussed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Formation and Ecotoxicity of N-Heterocyclic Compounds on Ammoxidation of Mono- and Polysaccharides

Ammoxidation of technical lignins under mild conditions is a suitable approach to artificial humic substances. However, carbohydrates as common minor constituents of technical lignins have been demonstrated to be a potential source of N-heterocyclic ecotoxic compounds. Ethyl acetate extracts of ammoxidation mixtures of the monosaccharides glucose and xylose exhibited considerable growth inhibit...

متن کامل

Formation of degradation compounds from lignocellulosic biomass in the biorefinery: sugar reaction mechanisms.

The degradation compounds formed during pretreatment when lignocellulosic biomass is processed to ethanol or other biorefinery products include furans, phenolics, organic acids, as well as mono- and oligomeric pentoses and hexoses. Depending on the reaction conditions glucose can be converted to 5-(hydroxymethyl)-2-furaldehyde (HMF) and/or levulinic acid, formic acid and different phenolics at ...

متن کامل

Hydrolysates of lignocellulosic materials for biohydrogen production

Lignocellulosic materials are commonly used in bio-H2 production for the sustainable energy resource development as they are abundant, cheap, renewable and highly biodegradable. In the process of the bio-H2 production, the pretreated lignocellulosic materials are firstly converted to monosaccharides by enzymolysis and then to H2 by fermentation. Since the structures of lignocellulosic materials...

متن کامل

Evaluation of four ionic liquids for pretreatment of lignocellulosic biomass

BACKGROUND Lignocellulosic biomass is highly recalcitrant and various pretreatment techniques are needed to facilitate its effective enzymatic hydrolysis to produce sugars for further conversion to bio-based chemicals. Ionic liquids (ILs) are of interest in pretreatment because of their potential to dissolve lignocellulosic materials including crystalline cellulose. RESULTS Four imidazolium-b...

متن کامل

Designer synthetic media for studying microbial-catalyzed biofuel production

BACKGROUND The fermentation inhibition of yeast or bacteria by lignocellulose-derived degradation products, during hexose/pentose co-fermentation, is a major bottleneck for cost-effective lignocellulosic biorefineries. To engineer microbial strains for improved performance, it is critical to understand the mechanisms of inhibition that affect fermentative organisms in the presence of major comp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 61  شماره 

صفحات  -

تاریخ انتشار 2013